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Abstract. We introduce a new type of Identity-Based Encryption (IBE)
scheme that we call Fuzzy Identity-Based Encryption. In Fuzzy IBE we
view an identity as set of descriptive attributes. A Fuzzy IBE scheme
allows for a private key for an identity, ω, to decrypt a ciphertext en-
crypted with an identity, ω′, if and only if the identities ω and ω′ are
close to each other as measured by the “set overlap” distance metric. A
Fuzzy IBE scheme can be applied to enable encryption using biometric
inputs as identities; the error-tolerance property of a Fuzzy IBE scheme
is precisely what allows for the use of biometric identities, which inher-
ently will have some noise each time they are sampled. Additionally, we
show that Fuzzy-IBE can be used for a type of application that we term
“attribute-based encryption”.

In this paper we present two constructions of Fuzzy IBE schemes.
Our constructions can be viewed as an Identity-Based Encryption of a
message under several attributes that compose a (fuzzy) identity. Our
IBE schemes are both error-tolerant and secure against collusion attacks.
Additionally, our basic construction does not use random oracles. We
prove the security of our schemes under the Selective-ID security model.

1 Introduction

Identity-Based Encryption [15] (IBE) allows for a sender to encrypt a message to
an identity without access to a public key certificate. The ability to do public key
encryption without certificates has many practical applications. For example,
a user can send an encrypted mail to a recipient, e.g. bobsmith@gmail.com,
without the requiring either the existence of a Public-Key Infrastructure or that
the recipient be on-line at the time of creation.

One common feature of all previous Identity-Based Encryption systems is
that they view identities as a string of characters. In this paper we propose a new
type of Identity-Based Encryption that we call Fuzzy Identity-Based Encryption
in which we view identities as a set of descriptive attributes. In a Fuzzy Identity-
Based Encryption scheme, a user with the secret key for the identity ω is able
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to decrypt a ciphertext encrypted with the public key ω′ if and only if ω and ω′

are within a certain distance of each other as judged by some metric. Therefore,
our system allows for a certain amount of error-tolerance in the identities.

Fuzzy-IBE gives rise to two interesting new applications. The first is an
Identity-Based Encryption system that uses biometric identities. That is we can
view a user’s biometric, for example an iris scan, as that user’s identity described
by several attributes and then encrypt to the user using their biometric identity.
Since biometric measurements are noisy, we cannot use existing IBE systems.
However, the error-tolerance property of Fuzzy-IBE allows for a private key (de-
rived from a measurement of a biometric) to decrypt a ciphertext encrypted with
a slightly different measurement of the same biometric.

Secondly, Fuzzy IBE can be used for an application that we call “attribute-
based encryption”. In this application a party will wish to encrypt a document to
all users that have a certain set of attributes. For example, in a computer science
department, the chairperson might want to encrypt a document to all of its sys-
tems faculty on a hiring committee. In this case it would encrypt to the identity
{“hiring-committee”,“faculty”,“systems”}. Any user who has an identity that
contains all of these attributes could decrypt the document. The advantage to
using Fuzzy IBE is that the document can be stored on an simple untrusted stor-
age server instead of relying on trusted server to perform authentication checks
before delivering a document.

We further discuss the usefulness of using biometrics in Identity-Based and
then discuss our contributions.

Using biometrics in Identity-Based Encryption. In many situations, using
biometric-based identity in an IBE system has a number of important advan-
tages over “standard” IBE. We argue that the use of biometric identities fits
the framework of Identity-Based Encryption very well and is a very valuable
application of it.

First, the process of obtaining a secret key from an authority is very natural
and straightforward. In standard Identity-Based Encryption schemes a user with
a certain identity, for example, “Bob Smith”, will need to go to an authority to
obtain the private key corresponding to the identity. In this process the user will
need to “prove” to the authority that he is indeed entitled to this identity. This
will typically involve presenting supplementary documents or credentials. The
type of authentication that is necessary is not always clear and robustness of
this process is questionable (the supplementary documents themselves could be
subject to forgery). Typically, there will exist a tradeoff between a system that
is expensive in this step and one that is less reliable.

In contrast, if a biometric is used as an identity then the verification pro-
cess for an identity is very clear. The user must demonstrate ownership of the
biometric under the supervision of a well trained operator. If the operator is
able to detect imitation attacks, for example playing the recording of a voice,
then the security of this phase is only limited by the quality of the biometric
technique itself. We emphasize that the biometric measurement for an individual
need not be kept secret. Indeed, it is not if it is used as a public key. We must
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only guarantee that an attacker cannot fool the key authority into believing that
an attacker owns a biometric identity that he does not.

Also, a biometric identity is an inherent trait and will always with a person.
Using biometrics in Identity-Based Encryption will mean that the person will
always have their public key handy. In several situations a user will want to
present an encryption key to someone when they are physically present. For
example, consider the case when a user is traveling and another party encrypts
an ad-hoc meeting between them.

Finally, using a biometric as an identity has the advantage that identities are
unique if the underlying biometric is of a good quality. Some types of standard
identities, such as the name “Bob Smith” will clearly not be unique or change
owners over time.

Security Against Collusion Attacks. In addition to providing error-tolerance in
the set of attributes composing the identity any IBE scheme that encrypts to
multiple attributes must provide security against collusion attacks. In particular,
no group of users should be able to combine their keys in such a way that they can
decrypt a ciphertext that none of them alone could. This property is important
for security in both biometric applications and “attribute-based encryption”.

Our Contributions. We formalize the notion of Fuzzy Identity-Based Encryption
and provide a construction for a Fuzzy Identity-Based Encryption scheme. Our
construction uses groups for which an efficient bilinear map exists, but for which
the Computational Diffie-Hellman problem is assumed to be hard.

Our primary technique is that we construct a user’s private key as a set of
private key components, one for each attribute in the user’s identity. We share
use Shamir’s method of secret sharing [14] to distribute shares of a master secret
in the exponents of the user’s private key components. Shamir’s secret sharing
within the exponent gives our scheme the crucial property of being error-tolerant
since only a subset of the private key components are needed to decrypt a mes-
sage. Additionally, our scheme is resistant to collusion attacks. Different users
have their private key components generated with different random polynomi-
als. If multiple users collude they will be unable to combine their private key
components in any useful way.

In the first version of our scheme, the public key size grows linearly with the
number of potential attributes in the universe. The public parameter growth is
manageable for a biometric system where all the possible attributes are defined
at the system creation time. However, this becomes a limitation in a more general
system where we might like an attribute to be defined by an arbitrary string. To
accommodate these more general requirements we additionally provide a Fuzzy-
IBE system for large universes, where attributes are defined by arbitrary strings.

We prove our scheme secure under an adapted version of the Selective-ID
security model first proposed by Canetti et al. [5]. Additionally, our construc-
tion does not use random oracles. We reduce the security of our scheme to an
assumption that is similar to the Decisional Bilinear Diffie-Hellman assumption.



460 A. Sahai and B. Waters

1.1 Related Work

Identity-Based Encryption. Shamir [15] first proposed the concept of Identity-
Based Encryption. However, it wasn’t until much later that Boneh and Franklin
[3] presented the first Identity-Based Encryption scheme that was both practical
and secure. Their solution made novel use of groups for which there was an
efficiently computable bilinear map.

Canetti et al. [5] proposed the first construction for IBE that was provably
secure outside the random oracle model. To prove security they described a
slightly weaker model of security known as the Selective-ID model, in which
the adversary declares which identity he will attack before the global public
parameters are generated. Boneh and Boyen [2] give two schemes with improved
efficiency and prove security in the Selective-ID model without random oracles.

Biometrics. Other work in applying biometrics to cryptography has focused on
the derivation of a secret from a biometric [12, 11, 10, 6, 9, 7, 4]. This secret can be
then used for operations such as symmetric encryption or UNIX style password
authentication.

The distinguishing feature of our work from the above related work on bio-
metrics above is that we view the biometric input as potentially public infor-
mation instead of a secret. Our only physical requirement is that the biometric
cannot be imitated such that a trained human operator would be fooled. We
stress the importance of this, since it is much easier to capture a digital reading
of someone’s biometric, than to fool someone into believing that someone else’s
biometric is one’s own. Simply capturing a digital reading of someone’s biometric
would (forever) invalidate approaches where symmetric keys are systematically
derived from biometric readings.

Attribute-based encryption. Yao et al. [17] show how an IBE system that en-
crypts to multiple hierarchical-identities in a collusion-resistant manner implies
a forward secure Hierarchical IBE scheme. They also note how their techniques
for resisting collusion attacks are useful in attribute-based encryption. However,
the cost of their scheme in terms of computation, private key size, and ciphertext
size increases exponentially with the number of attributes.

1.2 Organization

The rest of the paper is organized as follows. In Section 2 we formally define
a Fuzzy Identity-Based Encryption scheme including the Selective-ID security
model for one. Then, we describe our security assumptions. In Section 3 we
show why two naive approaches do not work. We follow with a description of
our construction in Section 4 and in Section 5 we prove the security of our
scheme. We describe our second construction in Section 6. Finally, we conclude
in Section 7.
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2 Preliminaries

We begin by presenting our definition of security. We follow with a brief review of
bilinear maps, and then state the complexity assumptions we use for our proofs
of security.

2.1 Definitions

In this section we define our Selective-ID models of security for Fuzzy Identity
Based Encryption. The Fuzzy Selective-ID game is very similar to the standard
Selective-ID model for Identity-Based Encryption with the exception that the
adversary is only allowed to query for secret keys for identities which have less
than d overlap with the target identity.
Fuzzy Selective-ID.

Init. The adversary declares the identity, α, that he wishes to be challenged
upon.

Setup. The challenger runs the setup phase of the algorithm and tells the ad-
versary the public parameters.

Phase 1. The adversary is allowed to issue queries for private keys for many
identities, γj , where |γj ∩ α| < d for all j.

Challenge. The adversary submits two equal length messages M0,M1. The
challenger flips a random coin, b, and encrypts Mb with α. The ciphertext
is passed to the adversary.

Phase 2. Phase 1 is repeated.
Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 .

Definition 1 (Fuzzy Selective-ID). A scheme is secure in the Fuzzy Selective-
ID model of security if all polynomial-time adversaries have at most a negligible
advantage in the above game.

2.2 Bilinear Maps

We briefly review the facts about groups with efficiently computable bilinear
maps. We refer the reader to previous literature [3] for more details.

Let G1, G2 be groups of prime order p, and let g be a generator of G1. We say
G1 has an admissible bilinear map, e : G1 × G1 → G2, into G2 if the following
two conditions hold. The map is bilinear; for all a, b we have e(ga, gb) = e(g, g)ab.
The map is non-degenerate; we must have that e(g, g) �= 1.

2.3 Complexity Assumptions

We state our complexity assumptions below.

Definition 2 (Decisional Bilinear Diffie-Hellman (BDH) Assumption).
Suppose a challenger chooses a, b, c, z ∈ Zp at random. The Decisional BDH
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assumption is that no polynomial-time adversary is to be able to distinguish the
tuple (A = ga, B = gb, C = gc, Z = e(g, g)abc) from the tuple (A = ga, B =
gb, C = gc, Z = e(g, g)z) with more than a negligible advantage.

Definition 3 (Decisional Modified Bilinear Diffie-Hellman (MBDH)
Assumption). Suppose a challenger chooses a, b, c, z ∈ Zp at random. The
Decisional MBDH assumption is that no polynomial-time adversary is to be
able to distinguish the tuple (A = ga, B = gb, C = gc, Z = e(g, g)

ab
c ) from

(A = ga, B = gb, C = gc, Z = e(g, g)z) with more than a negligible advantage.

3 Other Approaches

Before describing our scheme we first show three potential approaches to building
a Fuzzy Identity-Based Encryption scheme and show why they fall short. This
discussion additionally motivates our approach to the problem.

Correcting the error. We consider the feasibility of “correcting” the errors of
a biometric measurement and then use standard Identity-Based Encryption to
encrypt a message under the corrected input. However, this approach relies upon
the faulty assumption that each biometric input measurement is slightly devi-
ated from some “true” value and that the set of possible “true” values are well
known. In practice, the only reasonable assumption is that two measurements
sampled from the same person will be within a certain distance of each other.
This intuition is captured by previous work. Dodis, Rezyin, and Smith [7] use
what they call a fuzzy sketch that contains information of a first sampling of a
biometric which allows subsequent measurements to be corrected to it. If the cor-
rection could be done without any additional information then we could simply
do away with the fuzzy sketch.

Key per Attribute. The second naive approach we consider is for an authority to
give a user a different private key for each of the attributes that describe the user.
Such a system easily falls prey to simple collusion attacks where multiple users
combine their keys to form identities that are a combination of their attributes.
The colluders are then able to decrypt ciphertexts that none of them individually
were able to decrypt.

Several Keys. Suppose a key authority measures an input ω for a particular
party. The authority could create a separate standard IBE private key for every
ω′ such that |ω∩ω′| ≥ d, for some error-tolerance parameter d. However, the pri-
vate key storage will grow exponentially in d and the system will be impractical
for even modest values of d.

4 Our Construction

Recall that we view identities as sets of attributes and we let the value d represent
the error-tolerance in terms of minimal set overlap. When an authority is creating
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a private key for a user he will associate a random d−1 degree polynomial, q(x),
with each user with the restriction that each polynomial have the same valuation
at point 0, that is q(0) = y.

For each of the attributes associated with a user’s identity the key generation
algorithm will issue a private key component that is tied to the user’s random
polynomial q(x). If the user is able to “match” at least d components of the
ciphertext with their private key components, then they will be able to perform
decryption. However, since the private key components are tied to random poly-
nomials, multiple user’s are unable to combine them in anyway that allows for
collusion attacks.

A detailed description of our scheme follows.

4.1 Description

Recall that we wish to create an IBE scheme in which a ciphertext created using
identity ω can be decrypted only by a secret key ω′ where |ω ∩ ω′| ≥ d.

Let G1 be bilinear group of prime order p, and let g be a generator of G1.
Additionally, let e : G1×G1 → G2 denote the bilinear map. A security parameter,
κ, will determine the size of the groups.

We also define the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of
elements in Zp:

∆i,S(x) =
∏

j∈S,j �=i

x − j

i − j
.

Identities will be element subsets of some universe, U , of size |U|. We will
associate each element with a unique integer in Zp

∗. (In practice an attribute
will be associated with each element so that identities will have some semantics.)
Our construction follows:

Setup(d). First, define the universe, U of elements. For simplicity, we can take
the first |U| elements of Zp

∗ to be the universe. Namely, the integers 1, . . . , |U|
(mod p).

Next, choose t1, . . . , t|U| uniformly at random from Zp. Finally, choose y uni-
formly at random in Zp. The published public parameters are:

T1 = gt1 , . . . , T|U| = gt|U| , Y = e(g, g)y.

The master key is:

t1, . . . , t|U|, y.

Key Generation. To generate a private key for identity ω ⊆ U the following steps
are taken. A d − 1 degree polynomial q is randomly chosen such that q(0) = y.

The private key consists of components, (Di)i∈ω, where Di = g
q(i)
ti for every

i ∈ ω.
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Encryption. Encryption with the public key ω′ and message M ∈ G2 proceeds
as follows.

First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′, E′ = MY s, {Ei = T s
i }i∈ω′).

Note that the identity, ω′, is included in the ciphertext.

Decryption. Suppose that a ciphertext, E, is encrypted with a key for identity
ω′ and we have a private key for identity ω, where |ω ∩ ω′| ≥ d. Choose an
arbitrary d-element subset, S, of ω ∩ ω′.

Then, the ciphertext can be decrypted as:

E′/
∏

i∈S

(e(Di, Ei))
∆i,S(0)

= Me(g, g)sy/
∏

i∈S

(
e(g

q(i)
ti , gsti)

)∆i,S(0)

= Me(g, g)sy/
∏

i∈S

(
e(g, g)sq(i)

)∆i,S(0)

= M.

The last equality is derived from using polynomial interpolation in the expo-
nents. Since, the polynomial sq(x) is of degree d− 1 it can be interpolated using
d points.

4.2 Efficiency and Key Sizes

The number of exponentiations in the group G1 to encrypt to an identity will
be linear in the number of elements in the identity’s description. The cost of
decryption will be dominated by d bilinear map computations.

The number of group elements in the public parameters grows linearly with
the number attributes in the system (elements in the defined universe). The
number of group elements that compose a user’s private key grow linearly with
the number of attributes associated with her identity. Finally, the number of
group elements in a ciphertext grows linearly with the size of the identity we are
encrypting to.

4.3 Flexible Error-Tolerance

In this construction the error-tolerance is set to a fixed value d. However, in prac-
tice a party constructing a ciphertext might want more flexibility. For example,
if a biometric input device happens to be less reliable it might be desirable to
relax the set overlap parameters. In the example of attribute-based encryption
we would like to have flexibility in the number of attributes required to access a
document.
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There are two simple methods for achieving flexible error-tolerance. First, we
can create multiple systems with different values of d and the party encrypting a
message can choose the appropriate one. For m different systems the size of the
public parameters and private keys both increase by a factor of m. In the second
method the authority will reserve some attributes that it will issue to every key-
holder as part of their identity. The party encrypting the message can increase the
error-tolerance by increasing the number of these “default” attributes it includes
in the encryption identity. In this approach ciphertexts must be at least as long
as the maximum number of attributes that can be required in an encryption.
Additionally, we can combine the above two techniques and explore tradeoffs
between ciphertext size and public parameter and private key size.

5 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to
the hardness of the Decisional MBDH assumption.

Theorem 1. If an adversary can break our scheme in the Fuzzy Selective ID
Model, then a simulator can be constructed to play the Decisional MBDH game
with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack our
scheme in the Selective-ID model with advantage ε. We build a simulator B that
can play the Decisional MBDH game with advantage ε

2 . The simulation proceeds
as follows:

We first let the challenger set the groups G1 and G2 with an efficient bilinear
map, e and generator g. The challenger flips a fair binary coin, µ, outside of B’s
view. If µ = 0, the challenger sets (A,B,C,Z) = (ga, gb, gc, e(g, g)

ab
c ); otherwise

it sets (A,B,C,Z) = (ga, gb, gc, e(g, g)z) for random a, b, c, z. We assume the
universe, U is defined.

Init. The simulator B runs A and receives the challenge identity, α.

Setup. The simulator assigns the public key parameters as follows. It sets the
parameter Y = e(g,A) = e(g, g)a. For all i ∈ α it chooses random βi ∈ Zp and
sets Ti = Cβi = gcβi . For all i ∈ U − α it chooses random wi ∈ Zp and sets
Ti = gwi .

It then gives the public parameters to A. Notice that from the view A all
parameters are chosen at random as in the construction.

Phase 1. A makes requests for private keys where the identity set overlap be-
tween the identities for each requested key and α is less than d.

Suppose A requests a private key γ where |γ ∩ α| < d. We first define three
sets Γ, Γ ′, S in the following manner:

Γ = γ ∩ α,
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Γ ′ be any set such that Γ ⊆ Γ ′ ⊆ γ and |Γ ′| = d − 1, and

S = Γ ′ ∪ {0}.
Next, we define the decryption key components, Di, for i ∈ Γ ′ as:

If i ∈ Γ : Di = gsi where si is chosen randomly in Zp.

If i ∈ Γ ′ − Γ : Di = g
λi
wi where λi is chosen randomly in Zp.

The intuition behind these assignments is that we are implicitly choosing a
random d − 1 degree polynomial q(x) by choosing its value for the d − 1 points
randomly in addition to having q(0) = a. For i ∈ Γ we have q(i) = cβisi and for
i ∈ Γ ′ − Γ we have q(i) = λi.

The simulator can calculate the other Di values where i /∈ Γ ′ since the
simulator knows the discrete log of Ti for all i /∈ α. The simulator makes the
assignments as follows:

If i /∈ Γ ′ : Di = (
∏

j∈Γ

C
βjsj∆j,S(i)

wi )(
∏

j∈Γ ′−Γ

g
λj∆j,S(i)

wi )Y
∆0,S(i)

wi

Using interpolation the simulator is able to calculate Di = g
q(i)
ti for i /∈ Γ ′

where q(x) was implicitly defined by the random assignment of the other d − 1
variables Di ∈ Γ ′ and the variable Y .

Therefore, the simulator is able to construct a private key for the identity γ.
Furthermore, the distribution of the private key for γ is identical to that of the
original scheme.

Challenge. The adversary, A, will submit two challenge messages M1 and M0 to
the simulator. The simulator flips a fair binary coin, ν, and returns an encryption
of Mν . The ciphertext is output as:

E = (α,E′ = MνZ, {Ei = Bβi}i∈α).

If µ = 0, then Z = e(g, g)
ab
c . If we let r′ = b

c , then we have E0 = MνZ =
Mνe(g, g)

ab
c = Mνe(g, g)ar′

= MνY r′
and Ei = Bβi = gbβi = g

b
c cβi = gr′cβi =

(Ti)r′
. Therefore, the ciphertext is a random encryption of the message mν under

the public key α.
Otherwise, if µ = 1, then Z = gz. We then have E′ = Mνe(g, g)z. Since z is

random, E′ will be a random element of G2 from the adversaries view and the
message contains no information about Mν .

Phase 2. The simulator acts exactly as it did in Phase 1.

Guess. A will submit a guess ν′ of ν. If ν = ν′ the simulator will output µ′ = 0
to indicate that it was given a MBDH-tuple otherwise it will output µ′ = 1 to
indicate it was given a random 4-tuple.
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As shown in the construction the simulator’s generation of public parameters
and private keys is identical to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. There-
fore, we have Pr[ν �= ν′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when
ν �= ν′, we have Pr[µ′ = µ|µ = 1] = 1

2 .
If µ = 0 then the adversary sees an encryption of mν . The adversary’s advan-

tage in this situation is ε by definition. Therefore, we have Pr[ν = ν′|µ = 0] =
1
2 + ε. Since the simulator guesses µ′ = 0 when ν = ν′, we have Pr[µ′ = µ|µ =
0] = 1

2 + ε.
The overall advantage of the simulator in the Decisional MBDH game is

1
2Pr[µ′ = µ|µ = 0] + 1

2Pr[µ′ = µ|µ = 1] − 1
2 = 1

2 ( 1
2 + ε) + 1

2
1
2 − 1

2 = 1
2ε. �	

5.1 Chosen-Ciphertext Security

Our security definitions and proofs have been in the chosen-plaintext model.
Our scheme can be extended to the chosen-ciphertext model by applying the
technique of using simulation-sound NIZK proofs to achieve chosen-ciphertext
security [13]. Alternatively, if we are willing to use random oracles, then the we
can use standard techniques such as the Fujisaki-Okamoto transformation [8].

5.2 Security in Full IBE Model

Suppose all identities are composed of n attributes and we have a universe of
attributes, U . We make the observation [2] that our scheme is secure in the full
model with a factor of

(|U|
n

)
in the reduction.

The original IBE scheme of Boneh and Franklin [3] and a later schemes of
Boneh and Boyen [2] and Waters [16] achieve IBE in the full model with non-
exponential reductions. However, all methods achieve this by essentially remov-
ing the relationships between nearby identities. In Fuzzy-IBE it is essential that
there exists a relationship between nearby identities. Therefore, we conjecture
that a scheme that has a non-exponential loss of security in the full model will
require significantly different methods than those seen in prior work.

6 Large Universe Construction

In the previous construction the size of the public parameters grows linearly with
the number of possible attributes in the universe. We describe a second scheme
which uses all elements of Zp

∗ as the universe, yet the public parameters only
grow linearly in a parameter n, which we fix as the maximum size identity we
can encrypt to.

In addition to decreasing the public parameter size, having a large universe
allows us to apply a collision-resistant hash function H : {0, 1}∗ → Zp

∗ and
use arbitrary strings as attributes. We can now use attributes that were not
necessarily considered during the public key setup. For example, we can add any
verifiable attribute, such as “Ran in N.Y. Marathon 2005”, to a user’s private
key.
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Our large universe construction is built using similar concepts to the previous
scheme and uses an algebraic technique of Boneh and Boyen [2]. Additionally,
we reduce the security of this scheme to the Decisional BDH problem. We now
describe our construction and give our proof of security.

6.1 Description

Let G1 be bilinear group of prime order p, and let g be a generator of G1. Addi-
tionally, let e : G1 × G1 → G2 denote the bilinear map. We restrict encryption
identities to be of length n for some fixed n.

We define the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S, of elements
in Zp:

∆i,S(x) =
∏

j∈S,j �=i

x − j

i − j
.

Identities will be sets of n elements of Zp
∗.1 Alternatively, we can describe an

identity as a collection of n strings of arbitrary length and use a collision resistant
hash function, H, to hash strings into members of Zp

∗. Our construction follows:

Setup(n, d). First, choose g1 = gy, g2 ∈ G1.
Next, choose t1, . . . , tn+1 uniformly at random from G1. Let N be the set

{1, . . . , n + 1} and we define a function, T , as:

T (x) = gxn

2

n+1∏

i=1

t
∆i,N (x)
i .

We can view T as the function gxn

2 gh(x) for some n degree polynomial h. The
public key is published as: g1, g2, t1, . . . , tn+1 and the private key is y.

Key Generation. To generate a private key for identity ω the following steps are
taken. A d − 1 degree polynomial q is randomly chosen such that q(0) = y. The
private key will consist of two sets. The first set, {Di}i∈ω, where the elements
are constructed as

Di = g
q(i)
2 T (i)ri ,

where ri is a random member of Zp defined for all i ∈ ω.
The other set is {di}i∈ω where the elements are constructed as

di = gri .

Encryption. Encryption with the public key ω′ and message M ∈ G2 proceeds
as follows.

First, a random value s ∈ Zp is chosen. The ciphertext is then published as:

E = (ω′, E′ = Me(g1, g2)s, E′′ = gs, {Ei = T (i)s}i∈ω′).

1 With some minor modifications to our scheme, which we omit for simplicity, we can
encrypt to all identities of size ≤ n.
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Decryption. Suppose that a ciphertext, E, is encrypted with a key for identity
ω′ and we have a key for identity ω, where |ω ∩ ω′| ≥ d. Choose an arbitrary
d-element subset, S, of ω ∩ ω′.

Then, the ciphertext can be decrypted as:

M = E′ ∏

i∈S

(
e(di, Ei)
e(Di, E′′)

)∆i,S(0)

= Me(g1, g2)s
∏

i∈S

(
e(gri , T (i)s)

e(gq(i)
2 T (i)ri , gs)

)∆i,S(0)

= Me(g1, g2)s
∏

i∈S

(
e(gri , T (i)s)

e(gq(i)
2 , gs)e(T (i)ri , gs)

)∆i,S(0)

= Me(g, g2)ys
∏

i∈S

1
e(g, g2)q(i)s∆i,S(0)

= M.

The last equality is derived from using polynomial interpolation in the expo-
nents. Since, the polynomial sq(x) is of degree d− 1 it can be interpolated using
d points.

6.2 Efficiency and Key Sizes

Again, he number of exponentiations in the group G1 to encrypt to an identity
will be linear in the number of elements in the identity’s description. The cost
of decryption will be dominated by 2 · d bilinear map computations.

The key feature of the scheme is that the number of group elements in the
public parameters only grows linearly with, n, the maximum number of at-
tributes that can describe an encryption identity. The number of group elements
that compose a user’s private key grow linearly with the number of attributes as-
sociated with her identity. Finally, the number of group elements in a ciphertext
grows linearly with the size of the identity we are encrypting to.

6.3 Proof of Security

We prove that the security of our scheme in the Selective-ID model reduces to
the hardness of the Decisional BDH assumption.

Theorem 2. If an adversary can break our scheme in the Fuzzy Selective ID
Model, then a simulator can be constructed to play the Decisional BDH game
with a non-negligible advantage.

Proof. Suppose there exists a polynomial-time adversary, A, that can attack our
scheme in the Selective-ID model with advantage ε. We build a simulator B that
can play the Decisional BDH game with advantage ε

2 .
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The simulation proceeds as follows:
We first let the challenger set the groups G1 and G2 with an efficient bilinear

map, e and generator g. The challenger flips a fair binary coin µ outside of B’s
view. If µ = 0, the challenger sets (A,B,C,Z) = (ga, gb, gc, e(g, g)abc); otherwise
it sets (A,B,C,Z) = (ga, gb, gc, e(g, g)z) for random a, b, c, z.

Init. B will run A and receive the challenge identity, α, an n element set of
members of Zp.

Setup. The simulator assigns the public parameters g1 = A and g2 = B. It
then chooses a random n degree polynomial f(x) and calculates an n degree
polynomial u(x) such that u(x) = −xn for all x ∈ α and where u(x) �= −xn for
some other x. Since −xn and u(x) are two n degree polynomials they will either
agree on at most n points or they are the same polynomial. Our construction
assures that ∀x u(x) = −xn if and only if x ∈ α.

Then, for i from 1 to n + 1 the simulator sets ti = g
u(i)
2 gf(i). Note that since

f(x) is a random n degree polynomial all ti will be chosen independently at
random as in the construction and we implicitly have T (x) = g

in+u(i)
2 gf(i).

Phase 1. A makes requests for private keys where the identity set overlap be-
tween the identities for the requested keys and α is less than d.

Suppose A requests a private key γ. We first define three sets Γ, Γ ′, S in the
following manner:

Γ = γ ∩ α,

Γ ′ be any set such that Γ ⊆ Γ ′ ⊆ γ and |Γ ′| = d − 1, and

S = Γ ′ ∪ {0}.
Next, we define the decryption key components Di and di for i ∈ Γ ′ as:

Di = gλi
2 T (i)ri where ri, λi are chosen randomly in Zp and we let di = gri .

The intuition behind these assignments is that we are implicitly choosing a
random d − 1 degree polynomial q(x) by choosing its value for the d − 1 points
in Γ randomly by setting q(i) = λi in addition to having q(0) = a.

The simulator also needs to calculate the decryption key values for all i ∈
γ − Γ ′. We calculate these points to be consistent with our implicit choice of
q(x). The key components are calculated as:

Di = (
∏

j∈Γ ′
g

λj∆j,S(i)
2 )

(
g

−f(i)
in+u(i)
1 (gin+u(i)

2 gf(i))r′
i

)∆0,S(i)

and
di = (g

−1
in+u(i)
1 gr′

i)∆0,S(i).
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The value in +u(i) will be non-zero for all i /∈ α ,which includes all i ∈ γ−Γ ′.
This follows from the our construction of u(x).

Let ri = (r′i− a
in+u(i) )∆0,S(i) and let q(x) be defined as above. We then have:

Di = (
∏

j∈Γ ′
g

λj∆j,S(i)
2 )

(
(g

−f(i)
in+u(i)
1 )(gin+u(i)

2 gf(i))r′
i

)∆0,S(i)

= (
∏

j∈Γ ′
g

λj∆j,S(i)
2 )

(
(g

−af(i)
in+u(i) )(gin+u(i)

2 gf(i))r′
i

)∆0,S(i)

= (
∏

j∈Γ ′
g

λj∆j,S(i)
2 )

(
(ga

2 (gin+u(i)
2 gf(i))

−a
in+u(i) )(gin+u(i)

2 gf(i))r′
i

)∆0,S(i)

= (
∏

j∈Γ ′
g

λj∆j,S(i)
2 )

(
ga
2 (gin+u(i)

2 gf(i))r′
i− a

in+u(i)

)∆0,S(i)

= (
∏

j∈Γ ′
g

λj∆j,S(i)
2 )ga∆0,S(i)

2 (T (i))ri

= g
q(i)
2 T (i)ri

Additionally, we have:

di = (g
−1

in+u(i)
1 gr′

i)∆0,S(i) = (gr′
i− a

in+u(i) )∆0,S(i) = gri

Therefore, the simulator is able to construct a private key for the identity γ.
Furthermore, the distribution of the private key for γ is identical to that of the
original scheme since our choices of λi induce a random d− 1 degree polynomial
and our construction of the private keys components di and Di.

Challenge. The adversary, A, will submit two challenge messages M1 and M0 to
the simulator. The simulator flips a fair binary coin, ν, and returns an encryption
of Mν . The ciphertext is output as:

E = (α,E′ = MνZ,E′′ = C, {Ei = Cf(i)}i∈α).

If µ = 0, then Z = e(g, g)abc. Then the ciphertext is:

E = (α,E′ = Mνe(g, g)abc, E′′ = gc, {Ei = (gc)f(i) = T (i)c}i∈α).

This is a valid ciphertext for the message Mν under the identity α.
Otherwise, if µ = 1, then Z = e(g, g)z and E′ = Mνe(g, g)z. Since z is

random, E′ will be a random element of G2 from the adversaries view and the
message contains no information about Mν .
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Phase 2. The simulator acts exactly as it did in Phase 1.

Guess. A will submit a guess ν′ of ν. If ν = ν′ the simulator will output µ′ = 0
to indicate that it was given a BDH-tuple otherwise it will output µ′ = 1 to
indicate it was given a random 4-tuple.

As shown in the construction the simulator’s generation of public parameters
and private keys is identical to that of the actual scheme.

In the case where µ = 1 the adversary gains no information about ν. There-
fore, we have Pr[ν �= ν′|µ = 1] = 1

2 . Since the simulator guesses µ′ = 1 when
ν �= ν′, we have Pr[µ′ = µ|µ = 1] = 1

2 .
If µ = 0 then the adversary sees an encryption of Mν . The adversary’s ad-

vantage in this situation is ε by definition. Therefore, we have Pr[ν = ν′|µ =
0] = 1

2 + ε. Since the simulator guesses µ′ = 0 when ν = ν′, we have Pr[µ′ =
µ|µ = 0] = 1

2 + ε.
The overall advantage of the simulator in the DecisionalBDH game is 1

2Pr[µ′=
µ|µ = 0] + 1

2Pr[µ′ = µ|µ = 1] − 1
2 = 1

2 ( 1
2 + ε) + 1

2
1
2 − 1

2 = 1
2ε. �	

7 Conclusions

We introduced the concept of Fuzzy Identity Based Encryption, which allows
for error-tolerance between the identity of a private key and the public key used
to encrypt a ciphertext. We described two practical applications of Fuzzy-IBE
of encryption using biometrics and attribute-based encryption.

We presented our construction of a Fuzzy IBE scheme that uses set overlap
as the distance metric between identities. Finally, we proved our scheme under
the Selective-ID model by reducing it to an assumption that can be viewed as a
modified version of the Bilinear Decisional Diffie-Hellman assumption.

This work motivates a few interesting open problems. The first is whether
it is possible to create a Fuzzy IBE scheme where the attributes come from
multiple authorities. While, it is natural for one authority to certify all attributes
that compromise a biometric, in attribute-based encryption systems there will
often not be one party that can act as an authority for all attributes. Also,
a Fuzzy-IBE scheme that hides the public key that was used to encrypt the
ciphertext [1] is intriguing. Our scheme uses set-overlap as a similarity measure
between identities. (We note a Hamming-distance construction can also be built
using our techniques.) An open problem is to build other Fuzzy-IBE schemes
that use different distance metrics between identities.
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